System Identification through RBF Neural Networks: Improving Accuracy by a Numerical Approximation Method for the Centroids and Widths Adjustment

نویسندگان

  • Paulo D. L. de Oliveira
  • Arthur P. de S. Braga
  • Laurinda L. N. dos Reis
  • Fabrício G. Nogueira
  • Antônio B. de S. Júnior
چکیده

Within the last two decades there has been an increasing need for the development of mathematical models out of observed data captured from a system, a process called empirical modelling or systems identification. Under this circumstance, many techniques and methodologies have been proposed, among them the use of Artificial Neural Networks. It is proposed herein a non-hybrid gradient-based learning algorithm for a Radial Basis Function Neural Network aimed at improving the accuracy of non-linear dynamical system modelling. A single-stage non-hybrid approach is employed for the learning process, where the free parameters of the network – the centroids positioning, the receptive fields width, and the weights – are updated through a supervised method. Accurate identification capability is examined by the use of two non-linear datasets and the performance of the proposed method is compared with traditional techniques. Results demonstrate that nonlinear system identification can be significantly improved with easy-toimplement gradient-based RBF learning strategy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering Application Of Correlation on Ann Estimated Mass

A functional relationship between two variables, applied mass to a weighing platform and estimated mass using Multi-Layer Perceptron Artificial Neural Networks is approximated by a linear function. Linear relationships and correlation rates are obtained which quantitatively verify that the Artificial Neural Network model is functioning satisfactorily. Estimated mass is achieved through recallin...

متن کامل

Improving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm

Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...

متن کامل

PREDICTION OF NONLINEAR TIME HISTORY DEFLECTION OF SCALLOP DOMES BY NEURAL NETWORKS

This study deals with predicting nonlinear time history deflection of scallop domes subject to earthquake loading employing neural network technique. Scallop domes have alternate ridged and grooves that radiate from the centre. There are two main types of scallop domes, lattice and continuous, which the latticed type of scallop domes is considered in the present paper. Due to the large number o...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

Identification of Wind Turbine using Fractional Order Dynamic Neural Network and Optimization Algorithm

In this paper, an efficient technique is presented to identify a 2500 KW wind turbine operating in Kahak wind farm, Qazvin province, Iran. This complicated system dealing with wind behavior is identified by using a proposed fractional order dynamic neural network (FODNN) optimized with evolutionary computation. In the proposed method, some parameters of FODNN are unknown during the process of i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017